Intensive English Language / New Arrivals Program
 Mathematics and Numeracy: Teaching Learning Sequence

Strand	Number and algebra
Sub-strand	Fractions
Levels	E F
	Year 4, Year 5
Contributed by	Urszula Kotnowska Pennington R-7 Schools, South Australia Year developed Luda Reeves Richmond Primary School, South Australia Use this units with your own student cohort

Teachers are invited to trial and modify this teaching learning sequences. Content may need to be modified to meet the particular learning needs of a student cohort. Designers started with the same template, and while there was broad agreement on the use of the template - there may be some variations between this Teaching Learning Sequence and other Teaching Learning Sequences that were developed by DECD educators.

- differentiated activities may be found in either the activities column or the evidence and differentiation column
- generally, language elements were not repeated once they were recorded in an earlier activity
- cross curriculum priorities are included in some unites but not in others.

[^0][^1]
Intensive English Language / New Arrivals Program Mathematics and Numeracy Teaching Learning Sequence

WHAT DO WE WANT STUDENTS TO LEARN?					
Strand: Number and Algebra Substrand: Fractions		Learning Goals			
		Achievement Standards		Content Descriptions	Proficiencies
Mathematics Levels: $\begin{gathered} \text { E,F } \\ \text { (Year 4,5) } \end{gathered}$	Time Line:	E	Students recognise common equivalent fractions in familiar contexts and make connections between fractions. Students locate familiar fractions on a number line.	E Investigate equivalent fractions used in contexts E Count by quarters, halves and thirds, including with mixed numerals. E Locate and represent these fractions on a number line.	The student demonstrates the following proficiencies. Understanding - Compare fractions with the same and different denominator. - Represents fractions to
Overarching Ideas There are numbers between whole numbers. There is a relationship between the number of pieces the whole is divided into and the size of the fraction (the more pieces, the smaller the fraction) We can compare and order fractions and place them on a number line. Different fractions can represent the same quantity eg $1 / 2=2 / 4$ and we call this equivalence. You can calculate with fractions.		F	Students order unit fractions and locate them on number lines. Students add and subtract fractions with the same denominator(students continue patterns by adding and subtracting fractions)	F Compare and order common unit fractions and locate and represent them on a number line. F Investigate strategies to solve problems involving addition and subtraction of fractions with the same denominator.	Reasoning - Explain, demonstrate and evaluate strategies used to problem solve. Problem-solving - Solve equivalent fraction problems. - Choose and investigate strategies to solve a problem.

[^2]
WHAT DO WE WANT STUDENTS TO LEARN?

Numeracy General Capability	Other General Capabilities	Cross Curriculum Priorities
Level 4 Interpret Proportional Reasoning Students visualise, describe and order equivalent fractions. Apply Proportional Reasoning Students solve problems using equivalent fractions	Literacy The literacy capability of Composing Texts is guided by and reported in the sequence of the IELP Progress Report. In addition, the following aspects of the Comprehending Texts continuum are taught and assessed. Level 3 Typically by the end of Year 4, students: Navigate, read and view learning area texts navigate, read and view different types of texts with illustrations and more detailed graphics Listen and respond to learning area texts listen to spoken instructions with some detail for undertaking learning area tasks, listen to identify key information in spoken and audio texts, including audio-visual texts, and respond to texts read aloud Interpret and analyse learning area texts interpret literal information and make inferences to expand topic knowledge using comprehension strategies	

[^3]
HOW WILL WE KNOW IF THEY’VE LEARNT IT?

Diagnostic Assessment: (What do the students bring?)

How are you going to find out what students bring?
George Booker's ‘Building Numeracy’ Moving from diagnosis to intervention' Select common fraction questions from tests
4.1 Equal Parts Tool
4.2 Fraction naming Tool
4.3 Fraction Making Tool
4.4 Fraction Recording Tool

KEY
Content Descriptions are in plain font
Achievement Standards: Bold font
Numeracy Learning Continuum Description. Underlined font

[^4]Observation of students manipulating objects, completing tasks

Update Mathematics and Numeracy Report, Levels DEFG Fractions

- Questioning
- Feedback
- Observation
- Conferencing
- Work analysis

Assessment of Learning	Assessment as Learning	Assessment for Learning
Top 5 Assessment Sheet containing photos as evidence of student learning. (See Appendix) Observation of students manipulating objects, completing tasks	Self and peer assessment Feedback	Students brainstorm and record what they know about fractions (they can draw, write, use symbols etc)
Update Mathematics and Numeracy Report, Levels DEFG, Fractions - Questioning $-\quad$ Feedback	Student performance while completing on-line activities e.g Study Ladder, Maths is Fun. Providing immediate scores in an interactive game setting.	Observation fractions in their lives.
- Conferencing	Students discuss their findings and through discussion, expand their understandings. Students explain processes used.	
- Work analysis		Strategies used in tasks e.g comparing fractions with different denominator

WHAT DO WE WANT STUDENTS TO LEARN?	WHAT WILL WE DO TO GET THERE?			HOW WILL WE KNOW IF THEY'VE LEARNT IT?
Mathematical Skills and Concepts	Sequenced Learning Activities	Language Elements	Resources	Evidence and Differentiation
Reception - Yr 2 revision. Revise/establish that fractions are equal parts of a whole	1.Revise what a fraction is. Uses 'think pair share' to have students explore their existing knowledge about the definition of a fraction. Ask the groups to share their definitions with the class. Collate their definitions and relate it to the accurate definition - A fraction is an equal part of a whole 1.1 Check students' understanding of equal part/whole Check students' understanding of 'whole' in relation to shape, object, collection and measure. Set up four stations. Students rotate through them during the lesson. Students must complete all stations. Station 1-Shapes An A3 piece of paper which has a range of regular and irregular shapes on it, some of which have been divided into unequal parts. Students put stickers labelled 'FRACTION-EQUAL PARTS' on the shapes that they think meet the definition of a fraction. Station 2- Objects A basket of everyday 3D objects where a texta_or tape has been used to mark parts, some of which have been divided into equal parts, some of which have been divided into unequal parts. Students put stickers, labelled 'FRACTION-EQUAL PARTS' on the objects that they think meet the definition of a fraction.	Technical language part/whole equal/unequal numerator denominator Processes- verb 'to be' in questions and statements and negations. eg Is it equal? It is unequal? It is not a fraction. Subject verb agreement- are/is e.g The parts are not equal. This part is smaller. Technical Language shape, object, collection, measure Comparative Language This part is smaller than.... This collection has less than...	Sticky labels with the words- FRACTIONEQUAL PARTS Pictures of regular and irregular shapes, divided into equal/unequal parts. 3D objects divided into equal/unequal parts	-I can recognise fractions If NO, then(return to development of fraction concept (Year 3: Model and represent unit fractions) If YES, then_students draw/ construct / arrange shapes

[^5]Mathematics and Numeracy Teaching Learning Sequence | Contributed by: Urszula Kotnowska and Luda Reeves

[^6]Mathematics and Numeracy Teaching Learning Sequence | Contributed by: Urszula Kotnowska and Luda Reeves

[^7]		1.6 Revisit the concept of a unit fraction Roll die, the numeral indicated becomes the unit fraction. Show your fraction with each of the following materials (e.g roll a 6 and show $1 / 6$ of the whole) - shape/region - collection e.g paper clips - measure e.g water - object e.g pattern blocks	Students take a photo of their representations

E Recognise common equivalent fractions in familiar contexts E Investigate equivalent fractions used in contexts E/F Visualise, describe and order equivalent fractions	2.1 Build their understanding of the relationship between part and whole Provide pairs of students with a fraction kit that has unnamed parts. (wooden/plastic/material/paper) The students choose the largest part and label it as the whole. They then need to use post it notes to label all the other pieces. Then they repeat the task choosing the second biggest piece as the whole. 2.2 Introduce the idea of equivalent fractions Activity 1 Using the materials provided in 2.1, students are introduced to the term equivalence meaning "same as" Model using the fraction kit. Eg: Birthday cake fraction kit where the child has already labelled each piece. Take the whole, ask the students how many halves they would need to make the whole. Place the pieces on top as you ask the question. Model recording. $\begin{aligned} & 1=1 / 2+1 / 2 \\ & 1=1 / 4+1 / 4+1 / 4+1 / 4 \end{aligned}$ Place the pieces on top as you record. Then take another piece eg $1 / 2$ What other pieces will have equivalence with a half? Lay them on top to check. Ask students to explore equivalence for themselves. Challenge them to find at least six different equivalences and to record them. At the conclusion of the lesson, have students share the equivalences they have found and then the teacher enters them onto a whole class equivalence grid.	Processes choose, label Superlative adjectives -largest/smallest/biggest -first biggest/second biggest Technical vocabulary same as=equivalent Subject/Verb Agreement There are four quarters in a whole	Fraction kit with unnamed parts post it notes Fraction kit e.g birthday cake fraction kit with unnamed parts	- I understand that fraction size is relative to the size of the whole If NO, then provide students with more visual examples One-half can be smaller than one-third. If YES, then students come up with their own examples to illustrate fraction size is relative to the size of the whole

9 | Number and algebra: Fractions | Year 4, Year 5 | Intensive English Language / New Arrivals Program | http://tiny.cc/IELP-NAP-TLS
Mathematics and Numeracy Teaching Learning Sequence \| Contributed by: Urszula Kotnowska and Luda Reeves

[^8]Mathematics and Numeracy Teaching Learning Sequence | Contributed by: Urszula Kotnowska and Luda Reeves

11 | Number and algebra: Fractions | Year 4, Year 5 | Intensive English Language / New Arrivals Program | http://tiny.cc/IELP-NAP-TLS
Mathematics and Numeracy Teaching Learning Sequence \| Contributed by: Urszula Kotnowska and Luda Reeves

F Solve problems using equivalent fractions

Students are given fractions e.g 4/6, $2 / 3$ and are asked to apply the generalisation (eg: multiplying numerator and denominator by the same number) to find an equivalent fraction.

Clare Way Fractions \& decimals p. 59

Activity 7

Students work in pairs to develop a solution for each of the following situations. They choose one of the situations to report back to the whole group about.
a) Charlie ate $2 / 3$ of a chocolate bar. Harry's chocolate was the same size but it was divided into 6 pieces. How much does Harry have to eat to eat the same amount as Charlie?
b) Dad filled $1 / 3$ of the bath with water. Mum came along and filled another $2 / 6$ with water. Who filled the bath with more water?
c) Mum measured how tall her twins were. One was $3 / 4$ of a metre and the other was $7 / 8$ of a metre? Who was taller?

If $N O$, then return to length models, not area models as a central representational tool of fractions (De Walle p313-4)

If YES, then write a few fractions including equivalent pairs for a partner to place on a blank number line e.g

-I can solve problems using equivalent fractions

- less than a whole
- greater than a whole

If YES then, use language models in existing word problems and create own situation

[^9]E Count by quarters, halves and thirds including mixed numerals
Locate and represent fractions on a number line

3.1 Count by halves
 Activity 1

Teacher demonstrates by using 3 circles cut into halves.
Teacher counts $1 / 2,1,1^{1 / 2}, 2,2^{1 / 2}, 3$
Teacher points out that once we count over one whole the fraction becomes a mixed number.

Students work in pairs to count with the Fraction Bags.

Activity 2

Teacher introduces the Number Line Fraction Sheet Students work in pairs to label each marker on the number line. They then count orally on the number line. Each student takes a turn to listen to their partner count and gives them feedback on their counting skills.

See Appendix 2

Resource: Fraction

 Bags - Sandwich bags each with 10 circle or rectangle shapes cut into halves or quarters or eighths or sixths or tenthsResource - Number Line Fraction sheet A4 piece of paper which has at least five number lines with the 0-5 marked on them, and then mark lines for either halves, thirds, sixths, eighths, tenths.
(De Walle p313-4) Worksheet/cards with mixed and improper fractions
\square I can count using mixed numbers.

If YES, then students record themselves counting shapes from fraction bags
e.g $1 / 3,2 / 3,1,11 / 3,12 / 3,2$

Then teacher asks questions, such as the following -'How many $1 / 3$ to get to 3 ?
-'How many $1 / 5$ to get to 5 ?
-'How many $1 / 4$ to get to $4 \frac{1}{2}$?
I can compare fractions on a number line.

If YES students solve the following problem 6 friends are racing. The fractions tell how much of a distance they have already run. Place these friends on a line to show where they are between the start and finish?
Mary - $3 / 4$ Tom - $1 / 2$ Abdul- $5 / 6$ Han - $5 / 8$ Miguel - $5 / 9$ Anna 2/3 (page 314 De Walle Activity 15.2 'Who is Winning')

[^10]Mathematics and Numeracy Teaching Learning Sequence | Contributed by: Urszula Kotnowska and Luda Reeves

F Explain the relationship between a mixed number and an improper fraction	Activity 3 Iteration Activity from page 320 in De Walle to move from 2 thirds, 3 thirds, 4 thirds: Provide students with a strip of paper and tell them that it is $3 / 4$ of a whole. Ask them to find $1 / 2,1^{1} / 2,21 / 4,3$ and so on. To find this, students should partition the piece into 3 sections to find $1 / 4$ and then iterate the $1 / 4$ to find the fractions listed. 4.1 Mixed numbers/ Improper fractions Activity 1 Teacher revises the term mixed number and introduces the terms improper fraction by displaying some examples of each and asking students to identify which are which. Students then given a sheet/cards with examples of both on them - they need to sort them out into the two groups. Activity 2 Students work in pairs with a small whiteboard between them. One student writes either a mixed number or an improper fraction. The other student has to provide the alternate expression. They then reverse roles. e.g One student write 11/2. The other student then writes $51 / 2$ Activity 3 Students work in pairs to develop a solution for each of the following situations. They need to choose one of the situations to report back to the whole group about. a) If a class ate 24 half apples, how many whole apples did they eat?		Whiteboards and markers	Play the "between" game. Play as a whole group first and then in pairs. Teacher says a mixed number eg: 4 2/3, and asks between which two integers students would find this fraction.

[^11]| | b) If a teacher brought 10 apples cut in half to share for recess, how many students will she share it with?
 4.2 Count by other fractions
 Students practice with teacher counting by various fractions by the following game.
 Equipment- unifix blocks and dice
 Students roll dice- the number it lands on determines how many parts make a whole. Each time the class counts by fractions until they reach 3 wholes. e.g If dice lands on 3 , we need 3 unifix blocks to make a whole so we will count by thirds in the following way $1 / 3$, $2 / 3,1,11 / 3,12 / 3,2,21 / 3,22 / 3,3$.
 While whole class counts, teacher adds unifix cubes to represent the fractions. | Sentence Structure
 Dependent clause using if
 How many apples did a class eat, if they ate 24 half apples? | Unifix blocks and dice | |
| :---: | :---: | :---: | :---: | :---: |
| F Compare fractions | 5.1 Compare and order fractions with the same denominator
 Teacher poses question There are 15 students in our class. The teacher has to divide the students into 2 groups. Represent each group as a fraction. Which fraction/group is bigger? (7/15 or 8/15) What do you notice about the size of fractions with the same denominator?
 Students practice using other examples Order the following sets of fractions from smallest to largest e.g 4/6, 1/6, 2/6
 5.2 Compare and order fractions with a different denominator
 Activity 1
 Provide visuals of 3 circles. 1 divided into 5 parts, 1 divided into 3 parts and 1 divided into 8 parts.
 Shade 1 part each.
 Together with students identify the fractions for each of them. | | Sets of fractions to order
 3 circles on paper -1 divided into 5 parts -
 -1 divided into 3 parts
 -1 divided into 8 parts | If NO, then students use fraction wall to help them decide/check their answer
 If YES, then students are asked to explain their reasoning with area model e.g circles and on a number line. |

[^12]

[^13]| F Add and subtract fractions with the same denominator | 6.1 Add fractions using visuals
 Using the "birthday cake" fraction kit/wooden or plastic fraction kits, students identify the largest piece as the whole and then label each piece (revisit activity 1 in 2.1) Then they are asked to find at least five different ways to make a whole. $\begin{aligned} & \mathrm{eg}: 1 / 2+1 / 2 \\ & 1 / 4+1 / 4+1 / 4+1 / 4 \\ & 2 / 4+2 / 4 \end{aligned}$
 Ask students to work in pairs to make a list of three things they notice about what happens when you add fractions that have the same denominator. What would your class generalisation be?
 6.2 Add fractions symbolically
 Activity 1
 Revisit your class generalisation about adding fractions with the same denominator.
 Work in pairs to test out your generalisation. Report back to the whole group on what you find.
 Activity 2
 Students work in pairs to record 15 fraction addition sentences. They then swap with another pair and calculate the answers.
 6.3 Subtract fractions
 Activity 1
 Revise our generalisation for adding fractions with the same denominator. "Remember in mathematics if you know one thing you always know something else" Based on our addition generalisation how do you think Students work in pairs to develop a generalisation for subtraction. | Birthday cake fraction kit with unnamed parts |
| :---: | :---: | :---: |

[^14] Mathematics and Numeracy Teaching Learning Sequence | Contributed by: Urszula Kotnowska and Luda Reeves

Overview of language and examples used in the teaching, learning and assessing program

A summary of the language mostly pertaining to this substrand as used in the following teaching, learning and assessing program.

Oral Texts	Visual Texts and Symbols	Text Knowledge	Grammar Knowledge	Word Knowledge
Spoken Texts Participation in oral texts to explore understandings about our number system and place value Verbal elements Pronunciation of ordinal numbers Speech functions Appropriate use of and response to statements, questions and commands Social exchanges Explaining strategies in small group settings/whole class Reflecting on strategies used	Visuals in Multimodal texts Symbolism Symbols to represent fractions $+,-, \text { <,>,= }$ Semiotics Fraction wall Number line	Written texts: Explanation- Students explain strategies and reasoning for their choices Recounts for word problems Reference items It, they, this, these	Simple sentences A whole divided into 53 parts has 53 fifty thirds. Complex sentences This is a fraction because.... This is not a fraction because.... Word Order in questions, statements and negations. E.g Is it equal? (question) It is unequal (statement) It is not a fraction (negations) Paired constructions with verb to be omitted. The larger the denominator, (is), the smaller the fraction (is) Multi word verb group has been divided Subject Verb Agreement are/is e.g The parts are not equal. This part is smaller. Prepositions between, before, after Comparative Language This collection has less than... -first biggest/second biggest	Topic Vocabulary fraction names, integer part, whole, mixed number, numerator, denominator, equivalent, number line, shape object, collection, measure, improper, proper, mixed, equal, unequal, ordinal numbers (regular and irregular)

[^15] Mathematics and Numeracy Teaching Learning Sequence \| Contributed by: Urszula Kotnowska and Luda Reeves

Top 5

	Learning Goal	Evidence of Learning		
	I can recognise and find common equivalent fractions.			I can solve problems
:---				
using equivalent				
fractions.				
represent fractions on				
a number line.	\quad	I can change mixed		
:---				
number to an				
improper fraction and				
vice versa.	\quad	I can compare and		
:---				
order fractions.				

Student Comment:

Teacher Comment:

[^0]: A feedback form is available at tiny.cc/IELP-NAP-TLS. Please forward feedback to Erika Vonaspern

[^1]: 1 | Number and algebra: Fractions | Year 4, Year 5 | Intensive English Language / New Arrivals Program | http://tiny.cc/IELP-NAP-TLS Mathematics and Numeracy Teaching Learning Sequence \| Contributed by: Urszula Kotnowska and Luda Reeves

[^2]: 2 | Number and algebra: Fractions | Year 4, Year 5 | Intensive English Language / New Arrivals Program | http://tiny.cc/IELP-NAP-TLS Mathematics and Numeracy Teaching Learning Sequence | Contributed by: Urszula Kotnowska and Luda Reeves

[^3]: 3 | Number and algebra: Fractions | Year 4, Year 5 | Intensive English Language / New Arrivals Program | http://tiny.cc/IELP-NAP-TLS Mathematics and Numeracy Teaching Learning Sequence | Contributed by: Urszula Kotnowska and Luda Reeves

[^4]: 4 | Number and algebra: Fractions | Year 4, Year 5 | Intensive English Language / New Arrivals Program | http://tiny.cc/IELP-NAP-TLS Mathematics and Numeracy Teaching Learning Sequence | Contributed by: Urszula Kotnowska and Luda Reeves

[^5]: 5 | Number and algebra: Fractions | Year 4, Year 5 | Intensive English Language / New Arrivals Program | http://tiny.cc/IELP-NAP-TLS

[^6]: 6 | Number and algebra: Fractions | Year 4, Year 5 | Intensive English Language / New Arrivals Program | http://tiny.cc/IELP-NAP-TLS

[^7]: 7 | Number and algebra: Fractions | Year 4, Year 5 | Intensive English Language / New Arrivals Program | http://tiny.cc/IELP-NAP-TLS
 Mathematics and Numeracy Teaching Learning Sequence | Contributed by: Urszula Kotnowska and Luda Reeves

[^8]: 10 | Number and algebra: Fractions | Year 4, Year 5 | Intensive English Language / New Arrivals Program | http://tiny.cc/IELP-NAP-TLS

[^9]: 12 | Number and algebra: Fractions | Year 4, Year 5 | Intensive English Language / New Arrivals Program | http://tiny.cc/IELP-NAP-TLS Mathematics and Numeracy Teaching Learning Sequence | Contributed by: Urszula Kotnowska and Luda Reeves

[^10]: 13 | Number and algebra: Fractions | Year 4, Year 5 | Intensive English Language / New Arrivals Program | http://tiny.cc/IELP-NAP-TLS

[^11]: 14 | Number and algebra: Fractions | Year 4, Year 5 | Intensive English Language / New Arrivals Program | http://tiny.cc/IELP-NAP-TLS Mathematics and Numeracy Teaching Learning Sequence | Contributed by: Urszula Kotnowska and Luda Reeves

[^12]: 15 | Number and algebra: Fractions | Year 4, Year 5 | Intensive English Language / New Arrivals Program | http://tiny.cc/IELP-NAP-TLS Mathematics and Numeracy Teaching Learning Sequence | Contributed by: Urszula Kotnowska and Luda Reeves

[^13]: 16 | Number and algebra: Fractions | Year 4, Year 5 | Intensive English Language / New Arrivals Program | http://tiny.cc/IELP-NAP-TLS
 Mathematics and Numeracy Teaching Learning Sequence | Contributed by: Urszula Kotnowska and Luda Reeves

[^14]: 17 | Number and algebra: Fractions | Year 4, Year 5 | Intensive English Language / New Arrivals Program | http://tiny.cc/IELP-NAP-TLS

[^15]: 19 | Number and algebra: Fractions | Year 4, Year 5 | Intensive English Language / New Arrivals Program | http://tiny.cc/IELP-NAP-TLS

